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p ABSTRACT

-,.Incompressible boundary-layer transition has been analyzed using a

second-order closure turbulence model. With no transition-specific

modifications, the turbulence model predicts salient features of
- . incompressible, zero-pressure-gradient boundary-layer transition

including sensitivity to freestream turbulence and surface rough-

* ness, transition width, and transitional velocity profiles. With

transition modifications based on linear stability theory, the

model accurately predicts transition sensitivity to surface heat
transfer, pressure gradient, and suction. With no further modifi-

cations, transition predictions have been made for several

hydrodynamic bodies, including effects of surface heating. '
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NOTATION

SYMBOL DEFINITION

c f Local skin friction

Cp Pressure coefficient, (p-p.)/ pU, -.

CQ Volume coefficient, -pwvw/peUe

e Specific turbulent mixing energy [Equation (12)]

e max Maximum value of e in boundary layer

f(A),F{A;T' } Stability functions [Equations (34)]max

h Mean specific enthalpy

H(A) Heaviside stepfunction

k Roughness height (peak-to-valley)

L Body length measured along symmetry axis

Ne ,N Roughness functions [Equations (22,23)]

p Static pressure

PrL,PrT Laminar, turbulent Prandtl number

q Local heat flux [Equation (8)]

r Radial distance from body axis

Rec Minimum critical Reynolds number

Re^ Neutral stability Reynolds number
x

Rekx V/3 Reynolds number based on roughness height,
,x,s,6*,V'3 plate length, arclength, displacement thick-

ness, cube root of volume

ReT Turbulent Reynolds number [Equation (11)] -

s Arclength

Smin,Smax Arclengths between which Body 2 is heated

s mr Arclength at which body radius is a maximum

S,'BSR Roughness functions [Equations (19,20,21)]
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NOTATION (continued)

SYMBOL DEFINITION

T Mean temperature

T' Turbulence intensity at boundary-layer edge

T' Maximum value of T' in boundary layer
max

u,v Mean velocity components in s,y directions

u Friction velocity, w p

v' Fluctuating velocity in y direction

V Body volume

x Plate length

Parameters in model equations

Values of a,a* for fully turbulent flows

a Wave number

Parameters in model equations

6 Boundary layer thickness

6* Displacement thickness

E Kinematic eddy viscosity

F. 6 Momentum thickness

X Parameter in model equations

A Stability parameter [Equations (28)]

Molecular viscosity

v Kinematic molecular viscosity

p Mean density

a,a* Parameters in model equations

T Shear stress [Equation (7)]

W Turbulent dissipation rate [Equation (13)]

9. Turbulent length scale [Equation (9)]

viii



NOTATION (concluded)

SUBSCRIPTS DEFINITION

e Boundary-layer edge

t Transition point

w Body surface

co Freestream
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1. INTRODUCTION

Current design techniques for low-drag hydrodynamic bodies require

accurate prediction of transition from laminar to turbulent flow.

For example, guided by linear stability predictions, judicious use

of various factors such as surface heating and pressure gradient

has delayed transition to arclength Reynolds numbers in excess of

40 million for small hydrodynamic bodies. Based on this suc --s,

larger laminar-flow vehicles have been proposed for which t- si-

* tion Reynolds numbers must be in excess of 200 million. AgE

design procedures depend mainly upon linear stability theor,

Because of the expense involved in building these larger vehicles,

transition sensitivity to several additional factors must be estab-

. lished to insure feasibility of the design. Potentially detrimen-

tal effects of surface roughness, freestream turbulence, vibration

3 and acoustic disturbances must be established. Because of the

paucity of experimental data pertaining to such factors, the

. designer must turn to theoretically-based predictive methods.

* While linear stability theory is adequate for predicting effects

of primary design parameters such as pressure gradient and surface

heating, stability theory has no natural way of simulating effects

of surface roughness and freestream disturbances. Alternate

*. methods which simulate transition sensitivity to roughness and

freestream disturbances thus have potential utility in the design

of large laminar-flow vehicles.

.* One such method is based on second-order closure turbulence models.
" ,1-6

" As shown by Wilcox and Chambers, transition sensitivity to many

of the effects pertinent to hydrodynamic boundary layers can be

predicted with reasonable accuracy using turbulence model equa-

tions. While this method displays great potential for engineering

ldesign, confidence in the basic formulation requires further bolster-

ing. Two key points require clarification. Most significant, an

. explanation is needed for the manner in which Tollmien-Schlichting



waves manifest themselves in the theory. The second point ls that

model predictions display a strong sensitivity to freestream dis-

turbances which has been substantiated by limited experimental

measurements; further substantiation is needed.

The purpose of this study has been twofold. First, an explanation

has been sought for the way in which the turbulence-model approach

*-. accommodates Tollmien-Schlichting waves. Secori, turbulence-model

transition predictive accuracy has been assessed for the various

effects pertinent to transition on hydrodynamic vehicles, including

* freestream disturbances. Section 2 presents the model equation--

eupon which the study is based. Appropriate transition modifica-

tions to the fully turbulent form of the equations are devised, and

Scthe model's relation to stability theory is delineated. Section 3
- . summarizes results of classical incompressible boundary-layer

applications including comparison of predicted and measured effects

eon boundary-layer transition of freestream turbvence, surface

roughness, pressure gradient, suction and surface heat transfer.

In Section 4, the model is used to predict transition on foar hydro-

Sdynamic bodies with and without surface heating. The concludng

section summarizes results and conclusions.

2
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2. EQUATIONS OF MOTION

The turbulence/transition model equations are summarized in this

section including established values of all closure coefficients.

Subsection 2.1 presents the model equations including physical

meanings of turbulence field properties. Subsection 2.2 specifies

surface boundary conditions for flow over rough surfaces with mass

transfer. Subsection 2.3 gives details of special modifications

needed to obtain accurate predictions for effects on transition of

pressure gradient and surface heat transfer. In Subsection 2.4,

-the manner in which Tollmien-Schlichting waves manifest themselves

in the theory is explained.

* 2.1 THE TURBULENCE/TRANSITION MODEL

* Under the standard boundary-layer approximations, the model equa-

tions for two-dimensional (j=O) and axisymmetric (J=l) incompres-

sible flows are

* Mass Conservation

_u+ L -(r J v) = 0 (1)
as rj  ay

Momentum Conservation

au u d + (2)pu -- + pV-y ds ay

Energy Conservation
a h ah -q 1

pu-+ps= U+a- a (3)

Turbulent Mixing Energy

e ie [ u pe + (4) -"

"asy a]) .

Turbulent Dissipation Rate

+ 2 , I - +) 2]W PW2 + [+oP) 2 ] (W )

3



where s and y are orthogonal coor-tInates with s lying along the

body (arclength) and y being normal to the surface; r is the radial

distance from the body axis. Mean velocity components in the s

and y directions are denoted by u and v while h is the specific

enthalpy; p, p and v are mean density, pressure, and molecular

viscosity; T and q are the shear stress and normal heat flux. The

turbulent mixing energy, e, and the turbulent dissipation rate, W,

are needed to define the eddy diffusivity, E, which is given by the

following equation:

C = e/w (6)

The shear stress and heat flux are

= (w'pe )D(7

q + PrT/ (8)

where PrL and PrT are laminar and turbulent Prandtl numbers. The

.. quantity k is the turbulent length scale defined as

2.= e 1/w (9)

The turbulent Prandtl number, PrT, and the closure coefficients

*,a,* appearing in Equations (4) and (5) are

_ =9
20 100

2 2

Pr (10)

-1[1~(lX) exp (-ReT12)1

l (I exp (-2Re

10.

4.



where ReT is the turbulent Reynolds number defined by

ReT = pe /p (11)

Specification of the closure coefficient A is deferred to

Subsection 2.3.

Consistent with the arguments of Wilcox and Chambers, the turbu-

lent mixing energy is proportional to the kinetic energy attending

the fluctuation of fluid particles normal 
to the plane of shear.

, Letting v' denote the fluctuating velocity component normal to the

shear plane (under the boundary-layer approximations, shear planes

are parallel to the s direction), the turbulent mixing energy is

given by

e = <v'2> (12)
)J

* q~where < > denotes time average.

* The physical meaning of w has been discussed by Wilcox.2 For incom-

* pressible boundary layers, comparison of the limiting forms of the

" model equations and the exact Reynolds stress equation very close

*to a solid boundary shows that w is the rate at which e is dissipated

. into heat, mean kinetic energy and other fluctuation modes. For

", incompressible flows, Wilcox deduced that

W 3v <(3v'/ay)2 > (13)=WW <v'v'> (3

where v= p/p is kinematic viscosity.

2.2 BOUNDARY CONDITIONS

Boundary conditions for the model must be specified at a solid

boundary (y=O) and at the boundary-layer edge (y=6). Suitable

boundary conditions have been devised by Wilcox and Chambers;''

for completeness, the boundary conditions are summarized in this

* subsection.

5



For mean flow properties, conditions are the same as for a standard

- boundary-layer computation. The velocity satisfies the no-slip

condition at y=0 while either the surface temperature, Tw, or the

surface heat flux, qw, is specified. Hence

U u 0 , v= v
at y = 0 (14)

T = Tw  or DT/3y = PrL q w /Iw

At the boundary-layer edge, velocity and temperature assume pre-

scribed values; we thus write

U= U)e } at y = 6  (15)

=T Te

Turning now to the turbulence parameters e and w, edge boundary

conditions are most conveniently expressed in terms of the free-

stream turbulence intensity, T', and the turbulent length scale,

9,= e1/w. For transition applications, we generally use (see

Subsection 3.1)

ee !(T'/100)2 U2
P, e 2 .0 X 6 e at y = 6

where a = 3/10 is the high Reynolds number (Re >> 1) limiting value

- of a* and T' is given in per cent, i.e.,

T' E 00 <u 2 + v ' 2 +w2>/Ue (17)3 e e e U

Finally, the surface boundary conditions for e and w are

N v 2

e e w

~(18) * k 2

S uT

a c* V )
ODw

where k is roughness height, u is friction velocity, and c '/U e
T f T e

is skin friction. The quantity S is a univesal function of surface

6
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roughness and mass injection which has been determined by extensive

* study of viscous sublayer properties; S is given by

S= + (19)

where

SR = +( )(20)
UT w T

and

S(V w/u ) V

i + (Vw/Ut) W T21

ww T'" B ;(V/U1)

• TW.T

In analyzing the viscous sublayer, the two functions Ne and N were

taken to be unity. For transition applications, Ne and N vary

with the dimensionless grouping cf/(k/e). Such a dependence has

*- been introduced to facilitate use of a boundary-layer computation

, for predicting transition; having N = N = 1 would require an ellip-e w
tic integration method to account for local flow separation between !

roughness elements (see Wilcox and Chambers 4,5 for further details).

The functions N and N have been found by numerical experimentation;• . e wl.

their postulated dependence upon cf/(k/0) is

0 , UTk/v w < 5

N =275 c (22)

. k/O uT w

1 , k/0 2 75 cf

N W 275 16 (23)

/L 6/ ] , k/o > 275 cf

7
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2•3 TRANSIT[ON MODIFICATIONS

Of the various closure coefficients, model-predicted transition is

most sensitive to the coefficient X appearing in Equations (10).

As argued by Wilcox, the value of X can be determined by demanding

that the model equations predict that in a Blasius boundary layer

turbulent fluctuations are damped for Reynolds numbers below the

linear-stability-theory minimum-critical Reynolds number, Re

* Having mixing-energy production, c*13u/ayle, less than mixing

energy dissipation, $*we, insures such damping. Using the

* Blasius velocity profile and the smooth wall w profile (i.e.,

w= 2Ov/ay 2 - see Appendix), the maximum plate-length Reynolds num-

ber, Re^, at which dissipation is greater than or equal to produc-
x

tion throughout the boundary layer is

Re - 750/X2 (24)
x

The Reynolds number Re^ will be equal to 9.104 the accepted valuex
of Rec, provided

X 1/11 (25)

With X given by Equation (25), Wilcox and Chambers 5 (see Subsec-

tion 3.1) have shown that the model accurately simulates many

aspects of transition for an incompressible flat-plate boundary

layer (FPBL) including transition sensitivity to freestream turbu-

lence, transition width, and transitional velocity profiles. How-

ever, previous experience 3 with heated hydrodynamic boundary layers

shows that in order to accurately predict effects of pressure grad-

ient and surface heat transfer, Equation (25) must be modified.

The remainder of this subsection is devoted to explaining the need

for and specification of further modifications to the closure

coefficient X.

As noted above, the value of X has been fixed by demanding that

the linear-stability minimum-critical Reynolds number, Rec, for

the Blasius boundary layer match the corresponding model-equation

8
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neutral-stability Reynolds number, Re-. Demanding that Re c = Re^
x x

- - for the Blasius boundary layer yields the value of X given in

Equation (25). The model equations reasonably can be expected to

apply to transitional flows which are insensitive to spectral

effects. That is, the various constants in the model equations

are essentially correlation coefficients which have been inte-

grated over the turbulent spectrum. Hence, if the stability dia-

gram shows that a wide range of wave numbers, a, undergo amplifi-

cation, the spectrum will more closely resemble a fully-turbulent

spectrum than if only a small range of wave numbers are unstable.

For example, the stability diagram for a boundary layer subjected

to a pressure gradient is shown in Figure 1. For adverse pressure

gradient, a finite range of wave numbers are unstable at all

" Reynolds numbers in excess of Rexc (note that 6* is displacement

* *° thickness). On the basis of the discussion above, the model would

be expected to accurately predict the destabilizing effect of

adverse pressure gradient. In contrast, the stability diagram

becomes thinner with increasing favorable pressure gradient so

that spectral effects become increasingly important, particularly

for small T' which yields transition at large values of Re6p; the

model hence would be expected to fare poorly for transitional

boundary layers with favorable gradients (and small freestream

disturbances).

As shown by Wilcox and Chambers, the original version of the model

behaves Just as the above discussion indicates. Excellent agree-

ment between theory and experiment is obtained for adverse grad-

ients while, for low freestream turbulence intensities, the model

fails to predict the strong stabilizing effect of favorable grad-4
lent. To remove this deficiency, Wilcox and Chambers introduced

an empirical modification to Equation (25). While reasonably good

agreement with measurements resulted, the modification lacked rigor.

Fr, the pr'e.ent study, a better approach to modifying X has been

f'olrjd. That is, the requirement

9
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Rec = ReA (26)
x

has been extended to include favorable pressure gradients. Hence,

for small freestream turbulence intensity we expect to have

X =.jiif(A) as T' 0 (27)
e.1

- where A is the modified Pohlhausen pressure gradient parameter

Pe e 2 dUe e 2 
(a2U) (28)

Pw Ve ds Pw Ue aY2)w

The function f(A) must be determined by equating Re and Re^.

Figure 2 presents results based on the Phlhausen profiles ; a good

• fit to the data indicate the variation of X with A is hence

-87

f(A) B+ exp [-40A H(A)] (29)

where H(A) is the Heaviside stepfunction. The limiting value of

f(A) as A-0 has been obtained by a similar analysis of the asymp-

totic laminar profile for a uniformly-sucked FPBL.

*Turning to heat transfer, an additional modification to X is needed.

* Following Wilcox and Chambers,3 for incompressible aerodynamic

- boundary layers with heat transfer, the neutral stability Reynolds

number based on wall conditions is given by

U ,
Re" e 750.- Re^ = - (30)

;.. xw  vw

* 8
According to linear stability theory, the corresponding minimum-

critical Reynolds number Re c varies as follows:
w

Re w (T w/T ) (31)

Hence, since IT °' for air, we have

11
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Re 'v (u/u e)-5 (32) 1
- We thus postulate that for flows with heat transfer, X be written

*.- as follows:

A - I(i )F{A; T' (33). max

Finally, note that for high freestream turbulence intensities,

transition is unlikely to be sensitive to spectral effects regard-

less of the stability diagram. That is, typical high intensity

freestream turbulence will have fluctuations at all frequencies

(wave numbers). Therefore, the modification proposed in Equa-

tion (33) is strictly valid only as T' 0. Hence, to complete the

formulation, we introduce an exponential dependence upon T' themax'

maximum disturbance in the boundary layer, so that the completed

formulation is as follows.

TRANSITION MODIFICATION

X IT Ww F{A ; Ta'

eI

F{A T' = 1 + [f(A)-l] exp [-3T'2 ]
max max

1-" + 7 (34)
f(A) 88 88exp [-40AM(A)

where

A PeO2 fu and T' = 100 e "
Pw Ue Dy2/w max 3max/e

13'

13
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2.4 WHAT HAPPENED TO THE TOLLMIEN-SCHLICHTING WAVES?

Before proceeding to applications, it is instructive to discuss

the key aspect of the turbulence-model transition-prediction

method requiring clarification, namely, the manner in which

Tollmien-Schlichting waves manifest themselves in the theory.

Because we are solving the conventional long-time (Reynolds) aver-

aged equations of motion, no wave-like motion can be discerned.

Hence, the whole stability mechanism can only be represented

implicitly with the model equations. The arguments presented in

Subsection 2.3, particularly the point that the various closure

coefficients are correlation coefficients which have been inte-

grated over the wave-number spectrum, illustrate the manner in

which Tollmien-Schlichting wave-stability information is implied.

Clearly the wave-number spectrum of a given correlation coefficient

-. associated with initiation and early amplification of Tollmien-

Schlichting waves is likely to be quite different from the corre-

sponding spectrum in fully turbulent flow. Thus, the values of

the closure coefficients a and a* at the beginning of transition

differ markedly from the values appropriate for fully turbulent

flows.

Analysis of the viscous sublayer indicates that a and a* are

smaller at low Reynolds numbers than at higher Reynolds numbers,

" the ratio being X, i.e.,

a*(ReT = 0) = (35)
a*(ReT

and similarly for a. While the value quoted in Equation (25) is

sufficient to yield accurate sublayer structure and transition

predictions for the FPBL, we have found that a constant value for

A" is insufficient to provide an accurate model for more general

.- transition applications. It is through the precise value of X

that the Tollmien-Schlichting waves implicitly appear in the

model. Because the only transition-specific modifications to the

14
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model equations are for the coefficient X, it is hence unsurprising

. that ultimately we have chosen to rely upon linear stability theory

to set its value.

Given this insight, the whole concept of using turbulence-model

equations to describe transition can be cast in a different light.
On the one hand, time-averaging conceals many important phys-

ical aspects of transition mechanisms, particularly during the

early linear-amplification phase. We are thus obligated to put

-" some of the physics back into the equations which was lost through

the time-averaging process; ergo, the modification to X. On the

other hand, assuming the latter phases of transition to be very

rapid, the time-averaging process becomes a more plausible concept

as the flow more nearly resembles a turbulent flow. Interestingly,

the modification to X has little effect on the latter stages of

transition. The turbulence-model transition-prediction approach

thus has its strongest foundation in the latter stages of transi-

tion, precisely the regime where conventional linear-stability

-* methods are not well founded.

To explain this last point, note that the classical Smith-Gamberoni
9

e9 method ignores nonlinear effects in a region where such effects

certainly have a strong effect on the transition process. Thus,

turbulence-model equations might most properly be viewed as a

plausible alternative to the e 9 method. That is, a linear sta-

bility computation could be performed up to, and perhaps a bit

beyond, the minimum critical Reynolds number. Results of the sta-

bility computation would define X. Then rather, than continuing

to solve eigenvalue problems to determine amplification factors up

to the e9 amplification point, the model equations could be used

to predict transition location. What we are currently doing is

using a correlation of linear stability minimum critical Reynolds

numbers to fix the value of X.

15
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All of the comments above pertain to transition triggered by

disturbances of sufficiently low amplitude for linear stability

theory to be relevant. However, if large amplitude freestream or
10 .

roughness-induced disturbances are present, the bypass phenomenon 10

may occur, in which case Tollmien-Schlichting waves are irrelevant.

Because the turbulence/transition model accurately simulates4
bypass, most notably for roughness-induced transition, the cur-

rent formulation enjoys an interesting advantage over linear-

stability methods for flows with large amplitude disturbances.



3. BOUNDARY LAYER APPLICATIONS

To test the model, we first consider carefully-documented experi-

rn(ents for conventional incompressible boundary layers. This

section presents results of five applications, all of which are

pertinent to low-drag hydrodynamic vehicles. First, we apply

the model to an incompressible FPBL including comparisons of com-

puted and measured transitional velocity profiles, transition

width and transition sensitivity to freestream turbulence intensity

and scale. Then, we simulate the effects of surface roughness,

pressure gradient and suction. In the concluding subsection, we

use the model to analyze effects of surface heat transfer on aero-

dynamic boundary layers.

3.1 FREESTREAM TURBULENCEt

As the first step in testing the model, we analyze various aspects

of model-predicted incompressible FPBL transition. As shown in

Figure 3, starting from laminar flow at the plate leading edge,

the model predicts that the skin friction initially matches the

Blasius value. Then, depending upon the freestream turbulence

intensity, T', skin friction rapidly increases at a critical

Reynolds number, Rext, and asymptotically approaches the equilib-

rium turbulent value. Predicted variation of cf closely resembles

that observed when a boundary layer undergoes transition to

turbulence.

For example, Figure 4 shows that, consistent with measurements,

momentum-thickness Reynolds number at transition, Reot, varies

almo5t linearly with T' for low-intensity freestream turbulence

(i.e., T' less than 1%). (The criterion used to define transition

t Some of the results presented in this subsection were obtained
in Contract F44620-74-C-o48.

17
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is the point at which cf achieves a minimum.) Note that turbulence

scale has an effect on Reot, particularly for T' > 1%. Computations

have been performed with various ratios of 2e/. to 6; having
e C o6;hvn

9e //*6 given by

.004 ; T' < 1 (36)

most nearly matches the low-intensity values of Re0 t. Somewhat

* larger values of £e//* 6 are needed to match the high-intensity

data; for values of T' in excess of 1%, excellent agreement between

" computed and measured Res is obtained with ke//*6 given by
t e 00

e .004T' ; T' > 1 (37)

Intuitively, we expect that Z e should increase with T' for high-

intensity turbulence since, in the case of fully turbulent boundary

layers, values of X e//6 generally are an order-of-magnitude

greater than that given by Equation (36). The variation of £ withe "

T' given by Equation (37) is quite plausible since the peak local

intensity in a fully turbulent incompressible FPBL is of the order

of 10 to 12% which, from Equation (37) indicates Xe//a 6 is of the

order .04 to .05. For turbulent boundary layers, k e//86 is

typically .09.

In Figure 5, predicted width of the transition region is compared

12
with measured width. Transition width, Axt, is defined as the

F distance between minimum and maximum skin-friction points. Using

this definition for Axt, Reynolds number based on Ax t was computed

for Rext ranging from 5.0_104 to 4.44.106. As shown, the computed

curve falls within experimental data scatter.

13
Figure 6 exhibits computed and measured velocity profiles through

transition for T'= .03%. Comparison of velocity profiles at

x= 5.75 ft indicates the computed boundary layer goes turbulent a

bit fCaster than measured. Proceeding downstream, however, computed

20
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and measured velocity profiles show decreasing differences until,

beyond x= 6.75 ft, differences are less than 5%.

An interesting point about these results is that because (a2u/ay 2 ) w

vanishes for incompressible FPBL flow, the transition modification

defined in Equation (34) has no effect. Hence, the turbulence model

as stated in Subsection 2.1 applies, with X= 1/11, to the incompres-

sible FPBL.

3.2 SURFACE ROUGHNESS

Figure 7 shows computed effects of surface roughness on FPBL transi-

tion; experimental data of Feindt1 4 are shown for comparison.

Freestream intensity has only a slight effect on transition Reynolds

number based on plate length, Rext, for roughness-height Reynolds

numbers in excess of 300. Thus, consistent with qualitative obser-

vations, the model predicts existence of a roughness dominated

regime, although substantiating data are unavailable for determin-

ing the minimum value of Rek at which transition becomes roughness

dominated. Also, again consistent with measurements and qualita-

tive observations, roughness has virtually no effect on FPBL

transition for Rek 120.

3.3 PRESSURE GRADIENT

* Figure 8 conpares predicted and measured effects of pressure grad-

_ ient on FPBL transition. As shown in the figure, the Crabtree
1 5

* . data are closely simulated by the computations with T' = .01% and

.03%. Since the Crabtree data are for flight tests (closed circles)

and quiet wind tunnels (open circles), the value of T' for the

experiments would be expected to fall in the range .01%-.03%. The

agreement between theory and experiment hence is very good for low
1"4

" intensities. Additionally, the Feindt high-intensity data

(T' = 1.25%) are closely matched by the computed curve with T' = 1.25%;

A because Feindt found that transition occurs ahead of the minimum

critical Reynolds number for favorable gradient, this flow exhibits

an example of the bypass phenomenon.

23

" ..



10-' Rex

T= 1.25%

COMPUTED

2

1.5

00

0 100 200 300 4t00

Re k

Figure 7. Effect of surface roughness on flat-plate
* boundary-layer transition.

24 ~~-



Re0 1
3000 ________

0
CRABTREE

2500 A FEINDP

o SCHUBAUER-
SKRAMSTAD

-COMPUTED

2000

TI .01%
1500

0

1000 0

500

0

-.10 -.05 0 .05

A

Figure 8. Comparison of computed and measured
effects of pressure gradient on
boundary-layer transition.

25



3.4 SUCTION

Figure 9 shows computed minimum volume coefficient, CQmin, required

to prevent transition of a FPBL with uniform suction. Volume

coefficient is defined as

- Pw Vwi<CQ P (38)

e e

where vw is suction velocity. As shown, for values of T' above

about 0.3%, CQmin is .0012, a value typical of experiments per-

formed in noisy wind tunnels. As expected, our numerical computa-

- tions confirm that in the limit T'- 0 the model reproduces the

* linear-stability predicted CQmin of 1.4-10'.

In computing CQmin, we have demanded that transition be delayed

indefinitely, i.e., that

Rext (39)

It is instructive to compute a family of CQmin curves for the less

stringent condition

Rex > Rmin  (40)

where Rmin is a specified minimum Reynolds number below which

transition is to be prevented. Such a family of curves was con-

structed; results are shown in Figure 9. Consistent with the
" .18

Lang data, provided T' is not too large, CQmin of the order of

.001-.0003 is sufficient to stabilize a FPBL up to Reynolds num-

bers of a few million. However, for a fixed turbulence level,

achieving values of Rext beyond 10 million requires more suction.

To see this quantitatively, CQmin is replotted in Figure 10 with

T' held constant on each curve. As an example, when T' = 0.10%,

a value of CQmin= .0001 is sufficient to delay transition to

. Rext ' 6.106 while CQmin must increase by a factor of almost five

in order to have Rext= 200-10 6 .

26
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3.5 SURFACE HEAT TRANSFER

As our final boundary-layer application we now turn to effects of

surface heat transfer on aerodynamic boundary-layer transition.

Figure 11 compares computed and measured transition Reynolds number

for low-speed aerodynamic boundary layers. The data of Zysina-

Molozhen and Kuznetsova1 9 were taken in relatively noisy environ-

ments so that they correspond to high intensity freestream condi-

tions. The fact that the curve computed with T' = 1.25% is close to

the data is hence very encouraging. For low intensity computations

(T' = 0.03%), the predicted stabilizing effect of cooling is much

stronger than for the T' = 1.25% computations. As expected, the

variation of (Rext) is approaching the linear stability predictions

of Mack.
8  w

Because v increases with T , a subtle feature of surface heating
w W

effects on transition is masked by displaying (Rext) w e t/w

a function of T /Te . Specifically, as the heating rate decreases,w e
xt initially increases, achieves a maximum, and eventually decreases.

Figure 12 shows (Rext) e = Uext/v e as a function of Tw/T e for the

T'= 1.25% calculation. As shown, for T /T < 0.5, additional cool-

ing destabilizes the boundary layer. This trend is consistent with

linear stability nredictions.
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* 4. HYDRODYNAMIC BODY APPLICATIONS

Having tested the model for well-documented incompressible flows on

simple flat-plate geometries, we now turn to practical hydrodynamic

designs. Computations presented in this section have been performed

with virtually no advance knowledge of either linear-stability pre-

dictions or experimental data. The section consists of two parts.

Fir:;t, we simulate transition on four unheated hydrodynamic bodies;

- transition l.ocation is presented for each body over a range of

- freestream vilocities. Then, for two of the bodies, the stabilizing

- effect of surfac: heating on transition is predicted.

4.1 UNHEATED BODIES

Four typical, axisymmetric low-drag bodies have been considered.

Figure 13 depicts the body shapes and Douglas-Neumann computed

pressure distributions. In the figure, L denotes body length mea-

sured along the symmetry axis, smr is the arclength at which the

body radius is a maximum, and rm is the maximum body radius. Also,

]. C is the pressure coefficient defined by
°p

p-P(4
Cp pU (41)

Computations have been performed with molecular viscosity and

laminar Prandtl number given by values appropriate for water near

room temperature, 3 viz,

= 7.943-10-6(T/600)- 8 lb-sec/ft2  (42)

PrL = 2.51(T/600) -8  (43)

qL

with T in degrees Rankine. Freestream turbulence intensity is

assumed to be

T' = .025% (44)
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! and ie is given by Equation (36). Some of the computations have

been repeated with T' = .01% and Ze/A/a = .09; transition Reynolds

numbers changed by less than 12%. Roughness heights of zero,

16 pin and 48 pin have been used; variation of k over this range

produces a negligible effect on transition.

Inspection of Figure 13 shows that Bodies 1, 2 and 3 have progres-

sively strong favorable pressure gradients ahead of the maximum

radius (minimum pressure). Body 4 has a mild favorable gradient

up to S/S mr 0.41, followed by a slight adverse gradient from

S/s mr 0.41 to s/s 0.73, and subsequently a favorable pressure

gradient up to the pressure minimum. Intuitively, we expect to

find increasing transition Reynolds number as we proceed from

Body 1 to Body 3. For Body 4, we expect transition will occur

* either upstream of or very near the beginning of the adverse pres-

sure gradient on the forebody.w
Model predictions for the four bodies confirm our intuitive notions.

Figure 14 presents transition arclength, st, as a function of volume

-. Reynolds number, ReV1,3, defined by

ReVI3 pU.V1/ (45)

For Body 1, transition occurs ahead of laminar separation for Rev1/3

. in excess of about 2 million. Because of Body 2's stronger favor-

able pressure gradient, transition does not move ahead of laminar

. separation until ReVI/3 exceeds 9.8 million. For the even stronger

favorable gradient of Body 3, although transition appears just

- upstream of laminar separation at ReVI,3= 6 .5 million, transition

occurs downstream of minimum pressure at the highest Reynolds num-

*ber considered, namely 15 million. Finally, for Body 4, the

." adverse pressure gradient on the forebody triggers transition at

the lowest Reynolds numbers considered; for the higher Reynolds

numbers transition occurs upstream of the adverse gradient.

Table 1 summarizes results of the computations.
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I! Table 1. Summary of transition predictions
for the unheated bodies.

Body 10-6 Rev/ 3  s /s 106 Re
Number t mr st

1 1.12 1.108* 4.68*
2.79 0.841 8.43
5.57 0.346 6.67

11.17 0.178 6.78

2 5.19 1.160* 12.23*
i 10.36 1.070 22.98

. I11.97 0.847 20.28
I 13.97 0.661 17.63

15.17 0.568 16.05
I -17.17 0.471 14.63

C, 19.95 0.378 13.22

3 1.88 1.253* 4.14*
5.63 1.253* 12.50*
9.34 1.140 19.13
13.14 1.059 25.39
15.02 1.049 28.75

4 3.98 0.535 6.55
7.96 0.389 9.61

11.93 0.315 11.60
15.91 0.264 12.77

*Laminar separation.

4.2 HEATED BODIES

For Bodies 2 and 4, computations have been repeated with various

amounts of surface heating. Two heating distributions have been

considered for Body 2. For both distributions there is no heating

up to s= smin' uniform heating from s= smin to s= smax , and no

heating beyond s =s ma x (see insert in Figure 15); smin /s mr= .46

for the first distribution while s min/S mr= .17 for the second

distribution. The heating distributions for Body 4 are those pre-

dicted by linear-stability theory as being the minimum heating

required to prevent transition from occurring ahead of laminar

separation.
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.iure 15 and Table 2 present results of the computations for

eBody 2. Incipient transition Reynolds number, (Rev13)incip, (i.e.,

the value at which transition and laminar separation points coin-

cide) has been predicted as a function of heating rate. As shown,

when smin/smr =.46 a modest increase in (Revl,3) incip is observed.

Moving s m n closer to the nose causes a more dramatic increase in

(Revl3)incjp. This trend is in qualitative agreement with

measurements.

Table 2. Summary of transition predictions for
Body 2 with surface heating.

S/minsmr q (kwat1t/ft2) 10 - 6 (ReI/3) 10- 6 Re
incip t

.46 0 9.8 22.0
.75 12.0 28.0

1.50 14.0 33.0

.17 0 9.8 22.0
.75 13.0 32.0

1.50 17.6 40.3

Figure 16 and Table 3 summarize results for Body 4 with surface

i heating. At the two lowest Reynolds numbers, transition has been

prevented upstream of laminar separation. For ReVu3 = 11.93, transi-

tion is predicted between the minimum pressure and laminar separa-

tion points while, at the highest Reynolds number considered,

transition occurs Just upstream of minimum pressure. Again,

predictions are in qualitative agreement with measurements.

Table 3. Summary of transition predictions for
body 4 with surface heating.

10-6 Rev13 st/s 6 Re

ReV/3 t mr st

3.98 1.276* 15.91'
7.96 1.276* 32.10"

11.93 1.196 45•54
15.91 0.951 46.51

3Laminar separation.38
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13 5. DISCUSSION

Results presented in Sections 3 and 4 lend further confidence to
the turbulence-model transition-prediction method. The model

accurately simulates transition sensitivity to many of the effects

pertinent to low-drag hydrodynamic bodies. While detailed compari-

*! sons between predicted and measured transition points for the

hydrodynamic tcdies analyzed in Section 4 have not been presented,

early indications are that an acceptable level of accuracy has

- been obtained.

The explanation for the manner in which Tollmien-Schlichting waves

manifest themselves in the theory (Subsection 2.4) puts the model

in much clearer perspective than previously realized. Most notably,

by using linear stability theory to determine the closure coeffi-

*- cient X for a given flow the model could be the basis of a plausible

3 alternative to the - 9 procedure. Predictions remain relatively

* " sensitive to freestream turbulence intensity, a sensitivity which

S.-probably will remain uncertain until more extensive experimental

data become available.

In conclusion, success achieved in this study coupled with prior

success in predicting trnasition on Mach 5 ground-test 5 and

-Mach 20 flight-test vehicles further substantiates the notion

that the method can be used as a design tool for a wide range of

,. aerodynamic/hydrodynamic vehicles.
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APPENDIX: NEAR-SURFACE BEHAVIOR OF
SOLUTIONS TO THE MODEL EQUATIONS

This Appendix presents an analytical solution to the turbulence

model equations which is valid very near a solid boundary. To

determine how far from a solid boundary the analytical solution

applies, numerical solutions to the model equations have been

generated for a variety of laminar, transitional and turbulent

boundary layers. As a result, the required number of mesh points

needed for accurate numerical solution has been reduced with an

attendant reduction in computing time.

Computations with DCW Industries' EDDYBL computer code, which

embodies the turbulence model equations, generally require mesh

points extremely close to a solid boundary to insure accurate

computation of the turbulent dissipation rate, w. The reason for

having very fine resolution near the boundary is the singular

behavior of w at very smooth surfaces. For incompressible flow
20

over a rough surface, Saffman and Wilcox have shown that

+ (Al)

where w is the value at the surface. The quantity S is the univer-

sal function of surface roughness and mass injection defined in

Equations (19)-(21); for vw = 0 and for small roughness heights, k,

S is

S 36 (A2)

Note that for a perfectly smooth surface

W y-2 as y -0 (A3)

Tt is therefore a y-2 singularity we are forced to resolve In

IJ)DYI1, computations.
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If the analytical behavior of w is accurately represented by

Equations Al and A2, we could obviate the stringent resolution prob-

lem by using these equations rather than computing w with finite

differences. Hence, efforts focused first upon generalizing Equa-

tion Al for flows with heat transfer and then testing the accuracy

of the formula for several flows.

Using singular perturbation techniques we find that the generalized

solution for flows with heat transfer is

r -2
• = l + /OS [ (A4)

where u is velocity. Note that for incompressible flat-plate

boundary layers

* - u/ut =u y/v as u y/v 0 (A5)

wherefore Equation A4 reduces to Equation Al.

- '. To test the accuracy of Equation A4, boundary layer computations

have been performed for a variety of flows including incompressible

- and compressible FPBL's, incompressible FPBL with uniform blowing,

and flow over Body 2 with heating. As shown in Figures Al and A2,

with the exception of the blowing case, Equation A4 is accurate

for values of u/u below about 4. For the blowing case, Equation A4

is valid to about u/u = 1.

Hence, Equation A4 can be used for computing w below u/u of about

. 4 for the flows of interest in this study (incompressible, smooth

wall). Rather than having to place mesh points as close to the wall

as u y/v = 1/10, there is no need to have points any closer than

u y/v= 1. This results in a substantial (factor of 2) decrease in

computing time.
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